Inverse Inequality Estimates with Symbolic Computation
نویسندگان
چکیده
In the convergence analysis of numerical methods for solving partial differential equations (such as finite element methods) one arrives at certain generalized eigenvalue problems, whose maximal eigenvalues need to be estimated as accurate as possible. We apply symbolic computation methods to the situation of square elements and are able to improve the previously known upper bound by a factor of 8. More precisely, we try to evaluate the corresponding determinant using the holonomic ansatz, which is a powerful tool for dealing with determinants, proposed by Zeilberger in 2007. However, it turns out that this method does not succeed on the problem at hand. As a solution we present a variation of the original holonomic ansatz that is applicable to a larger class of determinants, including the one we are dealing with here. We obtain an explicit closed form for the determinant, whose special form enables us to derive new and tight upper resp. lower bounds on the maximal eigenvalue, as well as its asymptotic behaviour.
منابع مشابه
Hilbert's Inequality and Witten's Zeta-Function
We explore a variety of pleasing connections between analysis, number theory and operator theory, while revisiting a number of beautiful inequalities originating with Hilbert, Hardy and others. We shall first establish the aforementioned Hilbert inequality [?, ?] and then apply it to various multiple zeta values. In consequence we obtain the norm of the classical Hilbert matrix, while illustrat...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملDrazin inverse of one-variable polynomial matrices
There is proposed a representation of the Drazin inverse of a given polynomial square matrix, based on the extension of the Leverrier-Faddeev algorithm. Also, an algorithm for symbolic computation of the Drazin inverse of polynomial matrix is established. This algorithm represents an extension of the papers [5], [7] and a continuation of the papers [8], [9], [10]. The implementation is develope...
متن کاملSymbolic computation of weighted Moore-Penrose inverse using partitioning method
We propose a method and algorithm for computing the weighted MoorePenrose inverse of one-variable rational matrices. Continuing this idea, we develop an algorithm for computing the weighted Moore-Penrose inverse of one-variable polynomial matrix. These methods and algorithms are generalizations of the method or computing the weighted Moore-Penrose inverse for constant matrices, originated in [2...
متن کاملThe two variable per inequality abstract domain
This article presents the Two Variable Per Inequality abstract domain (TVPI domain for short). This so-called weakly-relational domain is able to express systems of linear inequalities where each inequality has at most two variables. The domain represents a sweet-point in the performance-cost tradeoff between the faster Octagon domain and the more expressive domain of general convex polyhedra. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1602.01304 شماره
صفحات -
تاریخ انتشار 2016